3.1000 \(\int \frac {x^2}{\sqrt {1-4 x^2} \sqrt {2-3 x^2}} \, dx\)

Optimal. Leaf size=35 \[ \frac {F\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}}-\frac {E\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}} \]

[Out]

-1/6*EllipticE(2*x,1/4*6^(1/2))*2^(1/2)+1/6*EllipticF(2*x,1/4*6^(1/2))*2^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 35, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {493, 424, 419} \[ \frac {F\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}}-\frac {E\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[1 - 4*x^2]*Sqrt[2 - 3*x^2]),x]

[Out]

-EllipticE[ArcSin[2*x], 3/8]/(3*Sqrt[2]) + EllipticF[ArcSin[2*x], 3/8]/(3*Sqrt[2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 493

Int[(x_)^(n_)/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[1/b, Int[Sqrt[a +
 b*x^n]/Sqrt[c + d*x^n], x], x] - Dist[a/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b, c,
 d}, x] && NeQ[b*c - a*d, 0] && (EqQ[n, 2] || EqQ[n, 4]) &&  !(EqQ[n, 2] && SimplerSqrtQ[-(b/a), -(d/c)])

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {1-4 x^2} \sqrt {2-3 x^2}} \, dx &=-\left (\frac {1}{3} \int \frac {\sqrt {2-3 x^2}}{\sqrt {1-4 x^2}} \, dx\right )+\frac {2}{3} \int \frac {1}{\sqrt {1-4 x^2} \sqrt {2-3 x^2}} \, dx\\ &=-\frac {E\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}}+\frac {F\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 28, normalized size = 0.80 \[ \frac {F\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )-E\left (\sin ^{-1}(2 x)|\frac {3}{8}\right )}{3 \sqrt {2}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[1 - 4*x^2]*Sqrt[2 - 3*x^2]),x]

[Out]

(-EllipticE[ArcSin[2*x], 3/8] + EllipticF[ArcSin[2*x], 3/8])/(3*Sqrt[2])

________________________________________________________________________________________

fricas [F]  time = 0.63, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {-3 \, x^{2} + 2} \sqrt {-4 \, x^{2} + 1} x^{2}}{12 \, x^{4} - 11 \, x^{2} + 2}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-3*x^2 + 2)*sqrt(-4*x^2 + 1)*x^2/(12*x^4 - 11*x^2 + 2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {-3 \, x^{2} + 2} \sqrt {-4 \, x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="giac")

[Out]

integrate(x^2/(sqrt(-3*x^2 + 2)*sqrt(-4*x^2 + 1)), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 27, normalized size = 0.77 \[ \frac {\sqrt {2}\, \left (-\EllipticE \left (2 x , \frac {\sqrt {6}}{4}\right )+\EllipticF \left (2 x , \frac {\sqrt {6}}{4}\right )\right )}{6} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x)

[Out]

1/6*2^(1/2)*(EllipticF(2*x,1/4*6^(1/2))-EllipticE(2*x,1/4*6^(1/2)))

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {-3 \, x^{2} + 2} \sqrt {-4 \, x^{2} + 1}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(-4*x^2+1)^(1/2)/(-3*x^2+2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/(sqrt(-3*x^2 + 2)*sqrt(-4*x^2 + 1)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {x^2}{\sqrt {2-3\,x^2}\,\sqrt {1-4\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((2 - 3*x^2)^(1/2)*(1 - 4*x^2)^(1/2)),x)

[Out]

int(x^2/((2 - 3*x^2)^(1/2)*(1 - 4*x^2)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{2}}{\sqrt {- \left (2 x - 1\right ) \left (2 x + 1\right )} \sqrt {2 - 3 x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(-4*x**2+1)**(1/2)/(-3*x**2+2)**(1/2),x)

[Out]

Integral(x**2/(sqrt(-(2*x - 1)*(2*x + 1))*sqrt(2 - 3*x**2)), x)

________________________________________________________________________________________